Министерство науки и высшего образования Российской Федерации Нижнетагильский государственный социально-педагогический институт (филиал) федерального государственного автономного образовательного учреждения высшего образования

«Российский государственный профессионально-педагогический университет»

Факультет естествознания, математики и информатики Кафедра информационных технологий

УΤ.	ВЕРЖ	ДАЮ
Зам	і. дире	ктора по УМР
		Л. П. Филатова
«	>>	2019 г.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ Б1.В.01.ДВ.04.02 МАШИННОЕ ОБУЧЕНИЕ И БОЛЬШИЕ МАССИВЫ ДАННЫХ

Уровень высшего образования Бакалавриат 09.03.03 Прикладная информатика Направление подготовки Профили Прикладная информатика в управлении ІТ-проектами Очная, заочная

Формы обучения

Рабочая программа дисциплины «Машинное обучение и большие массивы данных». Нижний Тагил: Нижнетагильский государственный социально-педагогический институт (филиал) $\Phi \Gamma AOY$ BO «Российский государственный профессионально-педагогический университет», 2019.-12 с.

Настоящая программа составлена в соответствии с требованиями федеральных государственных образовательных стандартов высшего образования по направлению 09.03.03 Прикладная информатика, профиль «Прикладная информатика в управлении проектами».

Автор: кандидат пед. наук, доцент, доцент кафедры ИТ Н.В. Бужинская

Рецензент: зам.директора по ИТ

НТ МУП НТТС Д.В. Виноградов

Одобрена на заседании кафедры информационных технологий 10 июня 2019 г., протокол № 12.

Заведующая кафедрой ИТ М. В. Мащенко

Одобрена на заседании кафедры информационных технологий 16 мая 2019 г., протокол № 9.

Заведующая кафедрой М. В. Мащенко

Рекомендована к печати методической комиссией факультета естествознания, математики и информатики 21 июня 2019 г., протокол № 10.

Председатель методической комиссии ФЕМИ В.А. Гордеева

Декан ФЕМИ Т. В. Жуйкова

Главный специалист ОИР О. В. Левинских

© Нижнетагильский государственный социальнопедагогический институт (филиал) ФГАОУ ВО «Российский государственный профессионально-педагогический университет», 2019. © Бужинская Надежда Владимировна, 2019.

СОДЕРЖАНИЕ

1. Цель и задачи освоения дисциплины	4
2. Место дисциплины в структуре образовательной программы	4
3. Результаты освоения дисциплины	4
4. Структура и содержание дисциплины	5
4.1. Объем дисциплины, виды контактной и самостоятельной работы	5
4.2. Содержание и тематическое планирование дисциплины	ϵ
4.3. Содержание тем дисциплины	7
5. Образовательные технологии	7
6. Учебно-методические материалы	8
6.1. Организация самостоятельной работы студентов	8
6.2. Организация текущего контроля и промежуточной аттестации	9
7. Учебно-методическое и информационное обеспечение	10
8. Материально-техническое обеспечение дисциплины	12

1. ЦЕЛЬ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Цель изучения дисциплины — формирование компетенций в области компьютерной обработки и анализа экономических данных для решения предметно-ориентированных задач на основе использования системного анализа и математического моделирования.

Задачи:

- сформировать целостное представление об осуществлении критического анализа, синтеза и представления информации с использованием системного подхода и статистических методов обработки данных для решения поставленных задач;
- научить применять основы системного подхода и методов математического анализа и моделирования для решения задач в профессиональной деятельности;
- показать возможности современных информационных и коммуникационных технологий для обработки больших массивов статистических данных при решении профессиональных задач;
- научить проводить обследование организаций, выявлять информационные потребности пользователей, формировать требования к информационной системе на основе статистической обработки данных.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ОБРАЗОВАТЕЛЬНОЙ ПРОГРАММЫ

Дисциплина «Машинное обучение и большие массивы данных» является дисциплиной по выбору по направлению 09.03.03 Прикладная информатика и включена в блок ДВ.04 «Дисциплины (модули) по выбору». Реализуется кафедрой информационных технологий в 5 и 6 семестрах.

Данная дисциплина является продолжением изучения таких дисциплин как «Высокоуровневые методы информатики и программирования», «Теория систем и системный анализ», «Теория вероятностей и математическая статистика» и др. Полученный при изучении опыт деятельности может быть полезен студентам в выполнении учебных проектов и оформлении выпускных квалификационных работ.

3. РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Дисциплина направлена на формирование следующих профессиональных компетенций УК-1, ОПК-1, ОПК-2, ПК-2.

Код и наименование	Код и наименование индикатора достижения				
профессиональной компетенции	профессиональной компетенции				
УК-1 Способен осуществлять	ИУК 1.1. Знает основные источники и методы поиска				
поиск, критический анализ и	информации, необходимой для решения поставленных				
синтез информации, применять	задач.				
системный подход для решения	ИУК 1.2. Умеет осуществлять поиск информации для				
поставленных задач	решения поставленных задач, применять методы				
	критического анализа и синтеза информации.				
	ИУК 1.3. Грамотно, логично, аргументированно формирует				
	собственные суждения и оценки; отличает факты от мнений,				
	интерпретаций и оценок; применяет методы системного				
	подхода для решения поставленных задач.				
ОПК-1 Способен применять	ОПК-1.1. Знает основы математики, физики,				
естественнонаучные и	вычислительной техники и программирования.				
общеинженерные знания, методы	ОПК-1.2. Умеет решать стандартные профессиональные				
математического анализа и	задачи с применением естественнонаучных и обще-				
моделирования, теоретического и	инженерных знаний, методов математического анализа и				
экспериментального	моделирования.				
исследования в	ОПК-1.3. Организует исследование объектов				
профессиональной деятельности	профессиональной деятельности.				

ОПК-2 Способен использовать	ОПК-2.1. Знает современные информационные технологии и				
современные информационные	программные средства, в том числе отечественного				
технологии и программные	производства при решении задач профессиональной				
средства, в том числе	деятельности.				
отечественного производства,	ОПК-2.2. Умеет выбирать современные				
при решении задач	информационные технологии и программные средства, в том				
профессиональной деятельности	числе отечественного производства при решении задач				
	профессиональной деятельности.				
	ОПК-2.3. Применяет современные информационные				
	технологии и программные средства, в том числе				
	отечественного производства, при решении задач				
	профессиональной деятельности.				
ПК-2 Способен разрабатывать и	ПК-2.1. Знает структуру и технологии разработки				
адаптировать прикладное	прикладного ПО				
программное обеспечение	ПК-2.2. Знает современные языки и среды				
	программирования				
	ПК-2.3. Умеет использовать основные				
	технологии разработки программных продуктов				
	ПК-2.4. Адаптирует прикладное программное обеспечение				
	под нужды организации				

Таким образом, обучающийся после освоения дисциплины будет знать:

- основные основы естественнонаучных дисциплин, необходимые для работы с большими массивами данных;
- методы поиска информации, необходимой для решения задач в области машинного обучения;
- основные информационные технологии и программные средства, применяемые в решении задач машинного обучения;
- структуру и технологии разработки программного обеспечения;
- современные языки и среды программирования для работы с большими массивами данных;

уметь:

- использовать основные технологии разработки программных продуктов;
- осуществлять выбор современных технологий и программных средств, в том числе и отечественного производства для обработки больших массивов данных;
- умеет решать задачи машинного обучения с применением естественнонаучных и общеинженерных знаний, методов математического анализа и моделирования;

владеть навыками:

 – разработки и адаптации прикладного программного обеспечения согласно потребностям заказчика и организации.

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1. Объем дисциплины, виды контактной и самостоятельной работы

Общая трудоемкость дисциплины составляет 6 зач. ед. (216 часов), их распределение по видам работ представлено в таблице.

Распределение трудоемкости дисциплины по видам работ

Вид работы	Кол-во часов	Кол-во часов
	дневное	заочное
Общая трудоемкость дисциплины по учебному плану	216	216
Контактная работа, в том числе:	76	20

Лекции	24	8
Лабораторные работы	52	12
Самостоятельная работа, в том числе:	140	196
Самоподготовка к текущему контролю знаний	95	183
Подготовка к экзамену	15	13

4.2. Тематический план 4.2.1. Тематический план для очной формы обучения

	Всег	Вид контактной работы, час		Сам	Формы текущего	
Наименование разделов и тем дисциплины (модуля)	о, часо в	Лекц ии	Лаб. рабо ты	ятел ьная рабо та	контроля успеваемости	
1. Основные понятия и примеры прикладных задач	24	4	10	10	Проверка глоссария, интеллект-карты по основным понятиям	
2.Метрические методы классификации	24	4	10	10	Проверка отчетов по лабораторным работам	
3. Логические методы классификации	24	4	6	14	Проверка отчетов по лабораторным работам	
Экзамен	36			36		
Итого за 5 семестр	108	12	26	70		
4. Линейные методы классификации	34	4	10	20	Проверка отчетов по лабораторным работам	
5. Методы регрессионного анализа	34	4	10	20	Проверка отчетов по лабораторным работам	
6. Байесовские методы классификации	31	4	6	21	Проверка отчетов по лабораторным работам	
Зачет с оценкой	9			9		
Итого за 6 семестр	108	12	26	70		
Итого:	216	24	52	140		

4.2.1. Тематический план для заочной формы обучения

Наименование разделов и тем дисциплины (модуля)	Всег о, часо в	конта	ид ктной ы, час Лаб. рабо ты	Сам осто ятел ьная рабо та	Формы текущего контроля успеваемости
1. Основные понятия и примеры прикладных задач	42	2		40	Проверка глоссария, интеллект-карты по основным понятиям
2.Метрические методы классификации	22	2		20	Проверка отчетов по лабораторным работам
3. Логические методы классификации	35		6	29	Проверка отчетов по лабораторным работам
Экзамен	9			9	

Итого за 5 семестр	108	4	6	98	
4. Линейные методы классификации	44	2	2	40	Проверка отчетов по лабораторным работам
5. Методы регрессионного анализа	24	2	2	20	Проверка отчетов по лабораторным работам
6. Байесовские методы	36		2	34	Проверка отчетов по
классификации					лабораторным работам
Зачет с оценкой	4			4	
Итого за 6 семестр	108	4	6	98	
Итого:	216	8	12	196	

4.3. Практические занятия

N₂	Наименование лабораторных работ	Кол-во			
п.п.		ауд. часов			
5 семестр					
1	Язык Python как средство работы с данными. Установка библиотек	2			
2	Классификация данных в языке Python	2			
3	Основы работы с Pandas	2			
4	Анализа данных в Python	2			
5	Решение задач	2			
6	Построение графиков и диаграмм	2			
7	Линейная регрессия	2			
8	Деревья решений	2			
9	Метод случайного леса	2			
10	Метод опорных векторов	2			
11	Машинное зрение и распознавание лиц в реальном времени	2			
12	Выполнение проекта	2			
13	Защита проекта	2			
	6 семестр				
14	Работа с массивами данных в С#	2			
15	Нейронные сети на С#	2			
16	Решение задач	2			
17	Создание приложения UWP	2			
18	Выполнение и защита проекта	2			
19	Возможности языка R в машинном обучении. Установка.	2			
20	Синтаксис языка R	2			
21	Методы работы с данными на языке R	2			
22	Классификация данных	2			
23	Кластеризация данных	2			
24	Математическое и нейросетевое моделирование	2			
25	Выполнение проекта	2			
26	Защита проекта	2			
	Итого:	52 часа			

4.5. Содержание дисциплины

1. Основные понятия и примеры прикладных задач. Машинное обучение. Большие массивы данных. Постановка задач обучения по прецедентам. Объекты и признаки. Типы шкал: бинарные, номинальные, порядковые, количественные. Типы задач: классификация, регрессия, прогнозирование, кластеризация. Примеры прикладных задач. Основные понятия: модель алгоритмов, метод обучения, функция потерь и функционал качества, принцип минимизации эмпирического риска, обобщающая способность, скользящий контроль.

Методика экспериментального исследования и сравнения алгоритмов на модельных и реальных данных. Полигон алгоритмов классификации. CRISP-DM — межотраслевой стандарт ведения проектов интеллектуального анализа данных.

- 2. Метрические методы классификации. Метод ближайших соседей и его обобщения. Метод ближайших соседей (kNN) и его обобщения. Подбор числа k по критерию скользящего контроля. Обобщённый метрический классификатор, понятие отступа. Метод потенциальных функций, градиентный алгоритм. Отбор эталонов и оптимизация метрики. Отбор эталонных объектов. Псевдокод: алгоритм СТОЛП. Функция конкурентного сходства, алгоритм FRiS-СТОЛП. Функционал полного скользящего контроля, формула быстрого вычисления для метода 1NN. Профиль компактности.
- 3. Логические методы классификации. Понятия закономерности и информативности. логической закономерности. Эвристическое, статистическое, энтропийное определение информативности. Асимптотическая эквивалентность статистического и отонйипостне определения. Сравнение областей эвристических И статистических закономерностей. Разновидности закономерностей: конъюнкции пороговых предикатов (гиперпараллелепипеды), синдромные правила, шары, гиперплоскости. Бинаризация признаков. Алгоритм разбиения области значений признака на информативные зоны. Решающие списки и деревья. Решающий список. Жадный алгоритм синтеза списка. Решающее дерево. Псевдокод: жадный алгоритм ID3. Недостатки алгоритма и способы их устранения. Проблема переобучения. Редукция решающих деревьев: предредукция и постредукция. Преобразование решающего дерева решающий В список. Небрежные решающие деревья (oblivious decision tree).
- **4.** Линейные методы классификации. Градиентные методы.Линейный классификатор, непрерывные аппроксимации пороговой функции потерь. Связь с методом максимума правдоподобия.Метод стохастического градиента и частные случаи: адаптивный линейный элемент ADALINE, персептрон Розенблатта, правило Хэбба. Теорема Новикова о сходимости. Доказательство теоремы Новикова. Эвристики: инициализация весов, порядок предъявления объектов, выбор величины градиентного шага, «выбивание» из локальных минимумов. Метод опорных векторов. Оптимальная разделяющая гиперплоскость. Понятие зазора между классами (margin). Случаи линейной разделимости и отсутствия линейной разделимости. Связь с минимизацией регуляризованного эмпирического риска. Кусочнолинейная функция потерь. Задача квадратичного программирования и двойственная задача. Понятие опорных векторов.
- **5.** Методы регрессионного анализа. Многомерная линейная регрессия. Задача регрессии, многомерная линейная регрессия. Метод наименьших квадратов, его вероятностный смысл и геометрический смысл. Сингулярное разложение. Нелинейная параметрическая регрессия. Метод Ньютона-Рафсона, метод Ньютона-Гаусса. Одномерные нелинейные преобразования признаков: метод настройки с возвращениями (backfitting) Хасти-Тибширани. Непараметрическая регрессия. Сглаживание. Локально взвешенный метод наименьших квадратов и оценка Надарая-Ватсона. Выбор функции ядра. Выбор ширины окна сглаживания. Сглаживание с переменной шириной окна. Неквадратичные функции потерь. Прогнозирование временных рядов.
- **6.** Байесовские методы классификации. Оптимальный байесовский классификатор. Принцип максимума апостериорной вероятности. Функционал среднего риска. Ошибки I и II рода. Теорема об оптимальности байесовского классификатора. Оценивание плотности распределения: три основных подхода. Наивный байесовский классификатор. Непараметрическое оценивание плотности.

Параметрическое оценивание плотности. Разделение смеси распределений. Логистическая регрессия.

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Теоретическая часть курса посвящена обзору средств и методов в области машинного обучения для решения практических задач. Для ее изучения используются интерактивные лекции (проблемные, демонстрационные и др.).

Основными методами, используемыми на практических занятиях, будут: метод демонстрационных примеров, мастер-класс, практикум с использованием практико-ориентированных задач и проектная технология.

6. УЧЕБНО-МЕТОДИЧЕСКОЕ ОБЕСПЕЧЕНИЕ

6.1. Организация самостоятельной работы студентов

Темы занятий	Количество часов		асов	Содержание	Формы
	Всего	Ауди-	Сам.	самостоятельной работы	контроля СРС
		торн.	работа		
1. Основные понятия и				Составление глоссария,	Проверка
примеры прикладных	24	14	10	интеллект-карты	глоссария,
задач	24	14	10	основных понятий	интеллект-
				Тестирование	карты
2.Метрические методы				Выполнение	Проверка
классификации	24	14	10	лабораторных работ	лабораторных
					работ
3. Логические методы				Выполнение	Проверка
классификации	24	10	14	лабораторных работ	лабораторных
					работ
Экзамен	36	0	36		
Итого:	108	38	70		
4. Линейные методы				Выполнение	Проверка
классификации	34	14	20	лабораторных работ	лабораторных
					работ
5. Методы				Выполнение	Проверка
регрессионного анализа	34	14	20	лабораторных работ	лабораторных
					работ
6. Байесовские методы				Выполнение	Проверка
классификации	31	10	21	лабораторных работ.	лабораторных
	31	10	41		работ. Оценка
					проекта
Зачет с оценкой	9	0	9		
	108	38	70		
Итого	216	74	142		

6.2. Организация текущего контроля и промежуточной аттестации

Текущий контроль усвоения знаний ведется по итогам представления выполненных самостоятельных заданий и защиты отчетов по лабораторным работам; участия в дискуссиях на лекционных занятиях, проверки составленного глоссария и результатов тестирования. Кроме того, студенты в качестве итогового задания разрабатывают устройство на базе выбранного робототехнического конструктора и презентуют его.

Текущий контроль учебных достижений студентов может быть проведен с использованием накопительной балльно-рейтинговой системы оценки в соответствии с Положением о НБРС. Промежуточная аттестация по данной дисциплине проводится в форме зачета с оценкой в шестом семестре и экзамена в пятом, на которых теоретические знания студентов проверяются в ходе устного ответа на вопрос, а практические по итогам выполнения и презентации практического задания.

ПРИМЕРНЫЕ ВОПРОСЫ К ЭКЗАМЕНУ В ПЯТОМ СЕМЕСТРЕ

- 1. Цели и задачи машинного обучения.
- 2. Особенности работы с большими массивами данных.
- 3. Постановка задач обучения по прецедентам. Объекты и признаки.
- 4. Типы шкал: бинарные, номинальные, порядковые, количественные.
- 5. Типы задач: классификация, регрессия, прогнозирование, кластеризация.
- 6. Метрические методы классификации.
- 7. Метод ближайших соседей и его обобщения.
- 8. Подбор числа k по критерию скользящего контроля.
- 9. Обобщённый метрический классификатор, понятие отступа.
- 10. Логические методы классификации.
- 11. Понятия закономерности и информативности.
- 12. Понятие логической закономерности.
- 13. Эвристическое, статистическое, энтропийное определение информативности.
- 14. Решающие списки и деревья.

Примерное практическое задание

С помощью Python решите задачу регрессии. Для сотрудников какой-нибудь компании определите, как значение зарплаты зависит от других данных, таких как опыт работы, уровень образования, роль, город, в котором они работают, и так далее.

ПРИМЕРНЫЕ ВОПРОСЫ К ЗАЧЕТУ С ОЦЕНКОЙ В ШЕСТОМ СЕМЕСТРЕ

- 1. Линейные методы классификации.
- 2. Градиентные методы.
- 3. Линейный классификатор, непрерывные аппроксимации пороговой функции потерь. Теорема Новикова о сходимости.
- 4. Эвристики: инициализация весов, порядок предъявления объектов, выбор величины градиентного шага, «выбивание» из локальных минимумов.
- 5. Метод опорных векторов.
- 6. Задача квадратичного программирования и двойственная задача.
- 7. Методы регрессионного анализа.
- 8. Многомерная линейная регрессия.
- 9. Задача регрессии, многомерная линейная регрессия.
- 10. Метод наименьших квадратов, его вероятностный смысл и геометрический смысл. Сглаживание.
- 11. Неквадратичные функции потерь.
- 12. Прогнозирование временных рядов
- 13. Байесовские методы классификации.
- 14. Оптимальный байесовский классификатор
- 15. Непараметрическое оценивание плотности.
- 16. Параметрическое оценивание плотности.
- 17. Логистическая регрессия.

Примерное практическое задание

Постройте кластеризацию данных для определения вида материнских плат. Данные возьмите из соответствующей базы на основе четырех параметров. Постройте соответствующие графики

Критерии оценки устного ответа на вопрос

полнота ответа:

- лаконичность ответа и умение выделить главное;
- соответствие современным достижениям науки;
- логичность ответа и умение построить завершенную монологическую речь;
- научно-популярный (деловой) стиль изложения;
- наличие практических примеров из жизни или профессиональной деятельности.

Критерии оценки практического задания

- работоспособность предложенных алгоритмов;
- умение объяснить принцип решения задачи.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ

Основная литература

- 1. Бессмертный И. А. Интеллектуальные системы: учебник и практикум для академического бакалавриата. М.: Издательство Юрайт, 2019. 243 с. [Электронный ресурс] // ЭБС Юрайт [сайт]. URL: https://biblio-online.ru/bcode/433716 (дата обращения: 18.02.2020).
- 2. Иванов В. М. Интеллектуальные системы: учебное пособие для вузов. М.: Издательство Юрайт, 2019; Екатеринбург: Изд-во Урал. ун-та. 91 с. [Электронный ресурс] // ЭБС Юрайт [сайт]. URL: https://biblio-online.ru/bcode/438026 (дата обращения: 18.02.2020).
- 3. Неделько В. М. Основы статистических методов машинного обучения: учебное пособие. Новосибирск: Новосибирский государственный технический университет, 2010. 72 с. [Электронный] // Электронно-библиотечная система IPR BOOKS. URL: http://www.iprbookshop.ru/45418.html (дата обращения: 18.02.2020). Режим доступа: для авторизир. пользователей.
- 4. Ракитский А. А. Методы машинного обучения: учебно-методическое пособие / А. А. Ракитский. Новосибирск: Сибирский государственный университет телекоммуникаций и информатики, 2018. 32 с. [Электронный ресурс] // Электронно-библиотечная система IPR BOOKS. URL: http://www.iprbookshop.ru/90591.html (дата обращения: 18.02.2020). Режим доступа: для авторизир. пользователей.
- 5. Сараев П. В. Методы машинного обучения: методические указания и задания к лабораторным работам по курсу. Липецк: Липецкий государственный технический университет, ЭБС АСВ, 2017. 48 с. [Электронный ресурс]// Электронно-библиотечная система IPR BOOKS. URL: http://www.iprbookshop.ru/83183.html (дата обращения: 18.02.2020). Режим доступа: для авторизир. пользователей.

Дополнительная литература

- 1. Загорулько Ю. А. Искусственный интеллект. Инженерия знаний : учебное пособие для вузов. М.: Издательство Юрайт, 2019. 93 с. [Электронный ресурс] // ЭБС Юрайт [сайт]. URL: https://biblio-online.ru/bcode/442134 (дата обращения: 18.02.2020).
- 2. Зыков С. В. Программирование. Объектно-ориентированный подход: учебник и практикум для академического бакалавриата. М.: Издательство Юрайт, 2019. 155 с. [Электронный ресурс] // ЭБС Юрайт [сайт]. URL: https://biblio-online.ru/bcode/434106 (дата обращения: 18.02.2020).
- 3. Зыков С. В. Программирование: учебник и практикум для академического бакалавриата: М.: Издательство Юрайт, 2019. 320 с. [Электронный реурс] // ЭБС Юрайт [сайт]. URL: https://biblio-online.ru/bcode/433432 (дата обращения: 18.02.2020).
- 4. Малугин В. А. Математическая статистика: учебное пособие для бакалавриата и магистратуры. Москва: Издательство Юрайт, 2019. 218 с. [Электронный ресурс] // ЭБС Юрайт [сайт]. URL: https://biblio-online.ru/bcode/441413 (дата обращения: 18.02.2020).

- 5. Федоров Д. Ю. Программирование на языке высокого уровня Python: учебное пособие для прикладного бакалавриата. М.: : Издательство Юрайт, 2019. 161 с. // ЭБС Юрайт [сайт]. URL: https://biblio-online.ru/bcode/437489 (дата обращения: 18.02.2020).
- 6. Энатская Н. Ю. Математическая статистика и случайные процессы: учебное пособие для прикладного бакалавриата. М.: Издательство Юрайт, 2019. 201 с. [Электронный ресурс] // ЭБС Юрайт [сайт]. URL: https://biblio-online.ru/bcode/433796 (дата обращения: 18.02.2020).

Интернет-ресурсы

- 1. Введение в машинное обучение. [Электронный ресурс]. URL: https://ru.coursera.org/learn/vvedenie-mashinnoe-obuchenie (дата обращения: 18.02.2020).
- 2. Введение в машинное обучение с помощью Python. Руководство для специалистов по работе с данными / А. Мюллер, С. Гвидо. [Электронный ресурс]. URL: https://codernet.ru/books/python/vvedenie-v-mashinnoe-obuchenie-s-pomoshhyu-python/ (дата обращения: 18.02.2020).
- 3. Единое окно доступа к образовательным ресурсам: Федеральный портал. URL: http://window.edu.ru/window/library. (дата обращения: 09.02.2020). Режим доступа: свободный. Текст: электронный.

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

Учебная аудитория 201Aa: 11 посадочных мест для студентов, рабочее место преподавателя, компьютеры — 12 шт., маркерная доска, робототехнические наборы Arduino, Lego MindStorms Ev3.

Пакет офисных программ: Office Standard 2016 Russian OLP NL Academic Edition.

Акт предоставления прав № ІТ021617 от 12.02.2016 г.

Microsoft Visio,

Microsoft OneNote,

Microsoft Project,

Microsoft SharePoint

Браузеры Firefox, Google Chrome, Яндекс.Браузер

Бесплатное ПО:

GIMP, Inkscape, Paint Net

7-Zip

Arduino IDE

Lego Digital Designer

Lego MindStorms Education Ev3